Electron-Density Distribution in Crystals of Potassium Hexachloroplatinate(IV), $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$

By S. Ohba and Y. Saito
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi-3, Kohoku-ku, Yokohama 223, Japan

(Received 27 January 1984; accepted 30 May 1984)

Abstract

M_{r}=486 \cdot 0\), cubic, $F m 3 m, \quad Z=4, \quad a=$ 9.7431 (5) $\AA, \quad V=924.88$ (9) $\AA^{3}, \quad D_{m}=3.50, \quad D_{x}=$ $3.49 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha_{1}, \quad \lambda=0.70926 \AA, \quad \mu=$ $17.90 \mathrm{~mm}^{-1}, \quad T=300(2) \mathrm{K}, \quad F(000)=872$, final R $=0.009$ for 135 observed unique reflections with $\sin \theta / \lambda \leq 0.8 \AA^{-1}$. The $\mathrm{Pt}^{\mathrm{IV}}$ atom is surrounded octahedrally by six Cl^{-}ions with $\mathrm{Pt}-\mathrm{Cl}$ distance $2 \cdot 314$ (1) \AA. $X-X$ synthesis shows a peak of $0.5(2) \mathrm{e} \AA^{-3}$ in the [111] direction at $0.5 \AA$ from the Pt nucleus; this may be due to the non-bonding $5 d$ electrons in $t_{2 g}$ orbitals.

Introduction. Aspherical d-electron distribution in $3 d$ or $4 d$ transition-metal complexes has been studied by accurate X-ray structure analysis (Coppens \& Hall, 1982; Toriumi \& Saito, 1983). The 5d transition-metal complex has been scarcely examined because of the strong absorption effect and a small valence/total electron ratio (Stevens \& Coppens, 1976). The difference synthesis of the square-planar complex $\left[\mathrm{PtCl}_{4}\right]^{2-}$ showed a negative peak on the $\mathrm{Pt}-\mathrm{Cl}$ bond axis which may be explained in terms of electron deficiency in the $d_{x^{2}-y^{2}}^{\prime}$ orbital (Ohba, Sato, Saito, Ohshima \& Harada, 1983). The reliability of the $X-X$ synthesis in the study of charge asphericity around heavy metals such as Pt has been tested with crystals of the title compound, $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$, which has a CaF_{2}-type structure and has only one positional parameter of the Cl atom (Ewing \& Pauling, 1928).

Experimental. D_{m} reported by Archibald (1910). Single crystals obtained from an aqueous solution by slow cooling; orange octahedra surrounded by $\{111\}$ faces. A sphere 0.22 (1) mm in diameter prepared with a piece of sandpaper. Rigaku AFC-5 automated four-circle diffractometer, Mo $K \alpha$ radiation, graphite monochromator, collimator $0.5 \mathrm{~mm} \varnothing$, detector aperture $1.55 \times 1.55^{\circ}, \theta-2 \theta$ scan, scan speed $2^{\circ} \mathrm{min}^{-1}$ in θ, scan width $(1.3+0.7 \tan \theta)^{\circ}$, max. number of repetitions 4 , criterion to terminate repetitions $\sigma(|F|) /$ $|F| \leq 0.01$, Ni-foil attenuators inserted when the diffracted beam exceeded 15000 counts s ${ }^{-1}(2 \cdot 34 \leq$ attenuation factors $\leq 12 \cdot 77$), circuit of correction for counting loss according to equation (4) of Fukamachi
(1969), pulse-height analyser, background-correction formula by Iwata \& Saito (1973). Variation of standards $<1 \%, 10619 \pm h, \pm k, \pm l$ reflections with $\chi>-30^{\circ} \quad\left(\frac{3}{4} \quad\right.$ of reciprocal space with $\sin \theta / \lambda$ $\leq 1 \cdot 22 \AA^{-1}$) measured; 8117 with $\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)$; 410 observed unique reflections. Variation of $|F(111)|$ with azimuthal angle around the scattering vector 7%. Variation of $\left|F_{o}\right|$ arising from crystal non-sphericity 3-5\% (Ohba, Sato \& Saito, 1981). Neglecting slight anisotropy in the secondary-extinction effect or in absorption, equivalent reflections were averaged; $R_{\text {int }}$ $\left.\left(\sum\left|\left|F_{o}\right|-\langle | F_{o}\right|\right\rangle\left|/ \sum\right| F_{o} \mid\right)=0.039$ for all 8117 observed reflections and 0.016 for 2946 reflections with $\sin \theta / \lambda \leq 0.8 \AA^{-1}$. Lattice constant determined based on 242θ values $\left(60<2 \theta<64^{\circ}\right)$. Lorentz-polarization and absorption corrections, $\mu r=1.98\left[2.6<\left(A^{*}\right)^{1 / 2}<\right.$ 3.6]. Transmission factors from International Tables for X-ray Crystallography (1959) on the basis of which the mean path length of each reflection was calculated (Ohba, Saito \& Noda, 1982). Atomic parameters refined with a scale factor by the full-matrix leastsquares program RADIEL (Coppens, Guru Row, Leung, Stevens, Becker \& Yang, 1979). $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \quad$ minimized; $\quad w^{-1}=\left[\sigma_{F} \text { (count.) }\right]^{2}+$ ($\left.0.015\left|F_{o}\right|\right)^{2}$. By introducing an isotropic secondaryextinction correction parameter (Zachariasen, 1967), R slightly reduced from 0.044 to 0.043 for the 410 unique reflections. At this stage of the refinement $\left|F_{o}\right|$ of high-angle reflections was found to be generally greater than $\left|F_{c}\right|$. Because this seemed to be due to X-ray diffuse scattering as in the case of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$, high-order reflections $\left(\sin \theta / \lambda>0.8 \AA^{-1}\right)$ were excluded from the refinement. $B_{\text {eq }}$ then increased by $0.16-$ $0.19 \AA^{2} . R$ became 0.011 and $w R=0.018$ for the 135 unique reflections. The valence-orbital populations of the Pt and Cl atoms were then refined. Charge of the K^{+}ion was fixed as +1 and total charge in the unit cell was kept neutral. The orbital scattering factors of Pt were calculated from the Hartree-Fock wavefunctions (Mann, 1967) using the program FORM provided by Professor S. Wakoh; those of Cl^{-}and K^{+}were from Fukamachi (1971). Valence orbitals of the Pt and Cl atoms were assumed to be $(5 s)^{2}(5 p)^{6}(5 d)^{6}$ and $(3 p)^{6}$,

0108-2701/84/101639-03\$01.50

Table 1. Positional and thermal $\left(\AA^{2}\right)$ parameters
The thermal parameters are expressed as follows:

$$
\text { exp }\left(-2 \pi^{2} a^{* 2}\left(h^{2} U_{11}+k^{2} U_{22}+l^{2} U_{33}\right)\right) \text {. }
$$

	x	y	z	U_{11} or $U_{\text {iso }}$	U_{22}	U_{33}
	x	0	0	$0.01658(8)$		
Pt	0	0	$0.013(24)$	$0.04703(21)$	$\left(=U_{22}\right)$	
Cl	$0.23750(7)$	0	0	$0.01913\left(\frac{1}{4}\right.$	$\frac{1}{4}$	$\frac{1}{4}$
K	$0.04102(25)$					

respectively, and radial parameters were not introduced. Effective charge of the Pt and Cl atoms was determined to be +2.3 (3) and -0.7 (3), respectively. Final $R=0.009$ and $w R=0.017, S=0.61$. $^{*} \Delta / \sigma<$ 0.06 . Reflection:parameter ratio 135:8. Smallest extinction factor $\left(F_{o}^{2} / F_{c}^{2}\right) 0.71$ for 400 . Anomalousdispersion corrections from International Tables for X-ray Crystallography (1974).

Discussion. Atomic parameters are given in Table 1.
The $\mathrm{Pt}-\mathrm{Cl}$ bond distance of 2.314 (1) \AA is almost the same as that in $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right][2.310$ (1) \AA; Ohba et al., 1983]. Anisotropy in the Cl thermal vibration was found. The ratio of the largest ($\perp \mathrm{Pt}-\mathrm{Cl}$ bond) and the smallest ($\| \mathrm{Pt}-\mathrm{Cl}$ bond) mean displacements is 1.6 (1) while that in $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ is 1.4 (1). The thermal parameters of the Pt and Cl atoms could not be explained completely by the rigid-body motion of $\left[\mathrm{PtCl}_{6}\right]^{2-}$. The r.m.s. amplitudes of the isotropic translational and vibrational motion of the $\left(\mathrm{Cl}^{-}\right)_{6}$ moiety are $0.14(2) \AA$ and $4.2(5)^{\circ}$, respectively, whereas the r.m.s. amplitude of the central Pt atom is $0 \cdot 13$ (1) \AA (Cruickshank, 1956). Difference electron densities were calculated based on the 135 unique reflections with $\sin \theta / \lambda \leq 0.8 \AA^{-1}$, where the densities of spherical atoms with refined charge, $\mathrm{Pt}^{2 \cdot 3+}, \mathrm{Cl}^{0 \cdot 7-}$ and K^{+}, were subtracted in order to show the charge asphericity clearly. The scale factor for $\left|F_{o}\right|$ in the last cycle of the charge refinement was used. The section of the (110) plane through the Pt nucleus is shown in Fig. 1. A positive peak of $0.5(2)$ e \AA^{-3} is located on the threefold axis $0.5 \AA$ from the Pt nucleus, whereas a negative trough is observed on the $\mathrm{Pt}-\mathrm{Cl}$ bond axis. The standard deviation assigned to the deformation density was estimated from the errors in $\left|F_{o}\right|$ and an error in the scale factor (Toriumi \& Saito, 1978). The charge asphericity is the same as was found around the transition-metal atoms in $\mathrm{K}_{2} \mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ (Ohba, Toriumi, Sato \& Saito, 1978) and in FeS_{2} (Stevens, De Lucia \& Coppens, 1980). This asphericity may be due to the non-bonding $5 d$ electrons. In fact, the electron

[^0]configuration of $\mathrm{Pt}^{\text {lv }}$ is $(5 d)^{6}$. The electrons occupy $t_{2 g}$ orbitals in an octahedral ligand field and the electron density in the [111] direction increases relative to that in the [100] direction. The distance of the d-electron peak from the Pt nucleus, $0.5 \AA$, is reasonable since those of the $3 d$ transition-metal complexes range from 0.3 to $0.5 \AA$. The present study confirmed that the charge asphericity around the $5 d$ transition-metal atoms can be detected on the deformation density maps even when the $d /$ total electron ratio is $6 / 78$. The number of electrons with a sphere centred at the Pt nucleus was calculated by the direct integration of charge density (Kobayashi, Marumo \& Saito, 1972). It was estimated to be 77.8 (8), since the number of electrons in the Pt sphere did not increase significantly when the radius of the sphere was varied from 1.3 to $1.5 \AA$. The Pt atom is largely neutralized in accordance with Pauling's (1960) electroneutrality rule. The negative deformation densities around the Cl atom in Fig. 1 suggest the polarization of the electron density. The bonding electron was not found on the $\mathrm{Pt}-\mathrm{Cl}$ bond axis, although it was observed for $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$. This discrepancy cannot be rationalized at present. The effect of the diffuse scattering which may be caused mainly by the lattice defects was observed for crystals of both $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ and $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$, while the disturbance has not been reported in the study of charge density around the $3 d$ transition-metal atoms. Further study should be carried out to confirm whether diffuse scattering is always observed for crystals for heavymetal complexes.

Note on $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$

Our previous paper reported that the neutron diffraction data of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ produced thermal parameters which were $10-30 \%$ higher than those obtained by the X-ray study (Ohba et al., 1983). Recently Harada (1983) pointed out that the high-angle reflections could not be covered by the ω-scan technique with a detector aperture of $3.01 \times 3.01^{\circ}$ when the incident-beam divergence was more than 1°

Fig. 1. A section of the $X-X$ synthesis through the Pt nucleus and two threefold axes. Contours are drawn at intervals of $0.1 \mathrm{e} \AA^{-3}$. Negative contours are dotted, zero contours chain-dotted.
and monochromatization was not sufficient. Recalculation based on only the low-order reflections with $\sin \theta / \lambda \leq 0.6 \AA^{-1}$ gave $R(F) 0.028$ for 110 unique reflections and $w R(F)=0.035$.* Equivalent isotropic thermal parameters, $B_{\text {eq }}$, for Pt, Cl and K decreased from $2.22(10), 2.89(6)$ and $3.33(24) \AA^{2}$ to $1.83(10)$, 2.49 (6) and 2.92 (21) \AA^{2}, respectively and approached the X-ray values, $1.69(1), 2.47(2)$ and $2.85(3) \AA^{2}$.

The authors would like to express their thanks to Professor Shinya Wakoh of the University of Library and Information Science, Ibaraki, for providing the program FORM. They are indebted to the Institute for Solid State Physics, University of Tokyo, for the use of a FACOM M-160F computer.

> * See deposition footnote.

References

Archibald, E. H. (1910). Z. Anorg. Chem. 66, 191.
Coppens, P., Guru Row, T. N., Leung, P., Stevens, E. D., Becker, P. J. \& Yang, Y. W. (1979). Acta Cryst. A35, 63-72.
Coppens, P. \& Hall, M. B. (1982). Editors. Electron Distributions and the Chemical Bond. New York: Plenum.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754-756.

Ewing, F. J. \& Pauling, L. (1928). Z. Kristallogr. 68, 223-230.
Fukamachi, T. (1969). Jpn. J. Appl. Phys. 8, 851-854.
FukamachiI, T. (1971). Tech. Rep. B12. Institute for Solid State Physics, Univ. of Tokyo.
Harada, J. (1983). Private communications.
International Tables for X-ray Crystallography (1959). Vol. II, 2nd ed., p. 300. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Iwata, M. \& Saito, Y. (1973). Acta Cryst. B29, 822-832.
Kobayashi, A., Marumo, F. \& Saito, Y. (1972). Acta Cryst. B28, 2709-2715.
Mann, J. B. (1967). Atomic Structure Calculations I. Report LA-3690. Los Alamos Scientific Laboratory, Univ. of California.
Ohba, S., Saito, Y. \& Noda, Y. (1982). Acta Cryst. A 38, 725-729.
Ohba, S., Sato, S. \& Saito, Y. (1981). Acta Cryst. A37, 697-701.
Ohba, S., Sato, S., Saito, Y., Ohshima, K. \& Harada, J. (1983). Acta Cryst. B39, 49-53.
Ohiba, S., Toriumi, K., Sato, S. \& Saito, Y. (1978). Acta Cryst. B34, 3535-3542.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Stevens, E. D. \& Coppens, P. (1976). Acta Cryst. A 32, 915-917.
Stevens, E. D., De Lucia, M. L. \& Coppens, P. (1980). Inorg. Chem. 19, 813-820.
Toriumi, K. \& Saito, Y. (1978). Acta Cryst. B34, 3149-3156.
Toriumi, K. \& Saito, Y. (1983). Advances in Inorganic Chemistry and Radiochemistry, pp. 27-81. New York: Academic Press.
Zachiariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1984). C40, 1641-1643

Preparation and Structure of the Aluminium Ammonium Phosphate Dihydrate $\mathrm{Al}_{2}\left[\mathrm{NH}_{4}\right](\mathrm{OH})\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$:* A Tunnel Structure with Ammonium Ions in the Channels

By John B. Parise
The Research School of Chemistry, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia

(Received 6 February 1984; accepted 30 May 1984)

Abstract

M_{r}=315 \cdot 0\), monoclinic, $\quad P 2_{1} / n, \quad a=$ 9.553 (1), $\quad b=9.577(1), \quad c=9.614$ (1) $\AA, \quad \beta=$ $103.56(1)^{\circ}, V=855.1 \AA^{3}, Z=4, D_{x}=2.45 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=6.4 \mathrm{~cm}^{-1}, \quad F(000)=640$, $T=293$ K. Final $R=0.025$ for 2449 observed data. The structure is isomorphous with $\mathrm{GaPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with columns of Al-centred corner- and edge-shared octahedra linked via PO_{4} tetrahedra to outline channels approximately parallel to the b axis. Ammonium groups occupy these channels and are hydrogen-bonded to framework O atoms and water molecules.

Introduction. Aluminium phosphate hydrates with $\mathrm{Al} / \mathrm{P}=1.0$ have been reported as the minerals variscite (Kniep, Mootz \& Vegas, 1977) and metavariscite

[^1]0108-2701/84/101641-03\$01.50
(Kniep \& Mootz, 1973). In these structures P and Al are in tetrahedral and octahedral coordination respectively. Recently a new class of molecular sieves constructed by a network of corner-shared AlO_{4} and PO_{4} tetrahedra has been described and one of these phases has had its structure determined from singlecrystal X-ray data (Wilson, Lok \& Flanigen, 1982; Wilson, Lok, Messina, Cannan \& Flanigen, 1982). It was during the attempted synthesis of the aluminium phosphate molecular sieve, $\mathrm{AlPO}_{4}-14$ (Wilson, Lok \& Flanigen, 1982), that a new structure type for AlPO_{4} was synthesized. In this structure Al is in an octahedrally coordinated site thereby relating it to variscite and metavariscite.

Subsequent to the determination of the structure of the compound reported here it was found to be isomorphous with $\mathrm{GaPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Mooney-Slater, (c) 1984 International Union of Crystallography

[^0]: * A list of structure factors for $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$, and a recalculated list of structure factors and atomic parameters for $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ based on neutron data with $\sin \theta / \lambda \leq 0.6 \AA^{-1}$ have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39539 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Dialuminium ammonium hydroxide bis(orthophosphate).

